Back to top

Science - issue

Přihlásit se k odběru zdroj Science - issue Science - issue
Science RSS feed -- current issue
Aktualizace: 16 min 20 sek zpět

Wafer-scale heterostructured piezoelectric bio-organic thin films

Čt, 07/15/2021 - 19:41

Piezoelectric biomaterials are intrinsically suitable for coupling mechanical and electrical energy in biological systems to achieve in vivo real-time sensing, actuation, and electricity generation. However, the inability to synthesize and align the piezoelectric phase at a large scale remains a roadblock toward practical applications. We present a wafer-scale approach to creating piezoelectric biomaterial thin films based on -glycine crystals. The thin film has a sandwich structure, where a crystalline glycine layer self-assembles and automatically aligns between two polyvinyl alcohol (PVA) thin films. The heterostructured glycine-PVA films exhibit piezoelectric coefficients of 5.3 picocoulombs per newton or 157.5 x 10–3 volt meters per newton and nearly an order of magnitude enhancement of the mechanical flexibility compared with pure glycine crystals. With its natural compatibility and degradability in physiological environments, glycine-PVA films may enable the development of transient implantable electromechanical devices.

Neural representations of space in the hippocampus of a food-caching bird

Čt, 07/15/2021 - 19:41

Spatial memory in vertebrates requires brain regions homologous to the mammalian hippocampus. Between vertebrate clades, however, these regions are anatomically distinct and appear to produce different spatial patterns of neural activity. We asked whether hippocampal activity is fundamentally different even between distant vertebrates that share a strong dependence on spatial memory. We studied tufted titmice, food-caching birds capable of remembering many concealed food locations. We found mammalian-like neural activity in the titmouse hippocampus, including sharp-wave ripples and anatomically organized place cells. In a non–food-caching bird species, spatial firing was less informative and was exhibited by fewer neurons. These findings suggest that hippocampal circuit mechanisms are similar between birds and mammals, but that the resulting patterns of activity may vary quantitatively with species-specific ethological needs.

Rank-dependent social inheritance determines social network structure in spotted hyenas

Čt, 07/15/2021 - 19:41

The structure of animal social networks influences survival and reproductive success, as well as pathogen and information transmission. However, the general mechanisms determining social structure remain unclear. Using data from 73,767 social interactions among wild spotted hyenas collected over 27 years, we show that the process of social inheritance determines how offspring relationships are formed and maintained. Relationships between offspring and other hyenas bear resemblance to those of their mothers for as long as 6 years, and the degree of similarity increases with maternal social rank. Mother-offspring relationship strength affects social inheritance and is positively correlated with offspring longevity. These results support the hypothesis that social inheritance of relationships can structure animal social networks and be subject to adaptive tradeoffs.

Universal phase dynamics in VO2 switches revealed by ultrafast operando diffraction

Čt, 07/15/2021 - 19:41

Understanding the pathways and time scales underlying electrically driven insulator-metal transitions is crucial for uncovering the fundamental limits of device operation. Using stroboscopic electron diffraction, we perform synchronized time-resolved measurements of atomic motions and electronic transport in operating vanadium dioxide (VO2) switches. We discover an electrically triggered, isostructural state that forms transiently on microsecond time scales, which is shown by phase-field simulations to be stabilized by local heterogeneities and interfacial interactions between the equilibrium phases. This metastable phase is similar to that formed under photoexcitation within picoseconds, suggesting a universal transformation pathway. Our results establish electrical excitation as a route for uncovering nonequilibrium and metastable phases in correlated materials, opening avenues for engineering dynamical behavior in nanoelectronics.

New Products

Čt, 07/15/2021 - 19:41

A pivotal moment

Čt, 07/15/2021 - 19:41

Estimating epidemiologic dynamics from cross-sectional viral load distributions

Čt, 07/15/2021 - 19:41

Estimating an epidemic’s trajectory is crucial for developing public health responses to infectious diseases, but case data used for such estimation are confounded by variable testing practices. We show that the population distribution of viral loads observed under random or symptom-based surveillance—in the form of cycle threshold (Ct) values obtained from reverse transcription quantitative polymerase chain reaction testing—changes during an epidemic. Thus, Ct values from even limited numbers of random samples can provide improved estimates of an epidemic’s trajectory. Combining data from multiple such samples improves the precision and robustness of this estimation. We apply our methods to Ct values from surveillance conducted during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in a variety of settings and offer alternative approaches for real-time estimates of epidemic trajectories for outbreak management and response.

Senolytics reduce coronavirus-related mortality in old mice

Čt, 07/15/2021 - 19:41

The COVID-19 pandemic has revealed the pronounced vulnerability of the elderly and chronically ill to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–induced morbidity and mortality. Cellular senescence contributes to inflammation, multiple chronic diseases, and age-related dysfunction, but effects on responses to viral infection are unclear. Here, we demonstrate that senescent cells (SnCs) become hyper-inflammatory in response to pathogen-associated molecular patterns (PAMPs), including SARS-CoV-2 spike protein-1, increasing expression of viral entry proteins and reducing antiviral gene expression in non-SnCs through a paracrine mechanism. Old mice acutely infected with pathogens that included a SARS-CoV-2–related mouse β-coronavirus experienced increased senescence and inflammation, with nearly 100% mortality. Targeting SnCs by using senolytic drugs before or after pathogen exposure significantly reduced mortality, cellular senescence, and inflammatory markers and increased antiviral antibodies. Thus, reducing the SnC burden in diseased or aged individuals should enhance resilience and reduce mortality after viral infection, including that of SARS-CoV-2.

Design and applications of surfaces that control the accretion of matter

Čt, 07/15/2021 - 19:41

Surfaces that provide control over liquid, solid, or vapor accretion provide an evolutionary advantage to numerous plants, insects, and animals. Synthetic surfaces inspired by these natural surfaces can have a substantial impact on diverse commercial applications. Engineered liquid and solid repellent surfaces are often designed to impart control over a single state of matter, phase, or fouling length scale. However, surfaces used in diverse real-world applications need to effectively control the accrual of matter across multiple phases and fouling length scales. We discuss the surface design strategies aimed at controlling the accretion of different states of matter, particularly those that work across multiple length scales and different foulants. We also highlight notable applications, as well as challenges associated with these designer surfaces’ scale-up and commercialization.

Expression of Foxp3 by T follicular helper cells in end-stage germinal centers

Čt, 07/15/2021 - 19:41

Germinal centers (GCs) are the site of immunoglobulin somatic hypermutation and affinity maturation, processes essential to an effective antibody response. The formation of GCs has been studied in detail, but less is known about what leads to their regression and eventual termination, factors that ultimately limit the extent to which antibodies mature within a single reaction. We show that contraction of immunization-induced GCs is immediately preceded by an acute surge in GC-resident Foxp3+ T cells, attributed at least partly to up-regulation of the transcription factor Foxp3 by T follicular helper (TFH) cells. Ectopic expression of Foxp3 in TFH cells is sufficient to decrease GC size, implicating the natural up-regulation of Foxp3 by TFH cells as a potential regulator of GC lifetimes.

A human apolipoprotein L with detergent-like activity kills intracellular pathogens

Čt, 07/15/2021 - 19:41

Activation of cell-autonomous defense by the immune cytokine interferon- (IFN-) is critical to the control of life-threatening infections in humans. IFN- induces the expression of hundreds of host proteins in all nucleated cells and tissues, yet many of these proteins remain uncharacterized. We screened 19,050 human genes by CRISPR-Cas9 mutagenesis and identified IFN-–induced apolipoprotein L3 (APOL3) as a potent bactericidal agent protecting multiple non–immune barrier cell types against infection. Canonical apolipoproteins typically solubilize mammalian lipids for extracellular transport; APOL3 instead targeted cytosol-invasive bacteria to dissolve their anionic membranes into human-bacterial lipoprotein nanodiscs detected by native mass spectrometry and visualized by single-particle cryo–electron microscopy. Thus, humans have harnessed the detergent-like properties of extracellular apolipoproteins to fashion an intracellular lysin, thereby endowing resident nonimmune cells with a mechanism to achieve sterilizing immunity.

Save Earth's global observatories

Čt, 07/08/2021 - 19:40

News at a glance

Čt, 07/08/2021 - 19:40

Stránky